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I. INTRODUCTION 

The interaction between supernova remnants (SNR) and interstellar clouds in the galaxy is known to 

playa major role in detennining the structure of the interstellar medium (ISM). We know that the ISM is 

highly inhomogeneous, consisting of both diffuse atomic clouds (T-IOOK) and dense molecular clouds 

(T .... I0K) surrounded by a low density warm ionized gas(T-I04K) and by a very hot coronal gas 

(T -1 06K). Next to radiation directly from stars, supernova explosions represent the most important fonn 

of energy injection into the ISM; they detennine the velocity of interstellar c1ouds, accelerate cosmic rays, 

and can compress clouds to gravitational instability, possibly spawning a new generation of star 

formation. 1 The shock waves from supernova remnants can compress, accelerate, disrupt and render 

hydrodynamically unstable interstellar clouds, thereby ejecting mass back into the intercloud medium. 

Thus, v/hile the interaction of the SNR blast wave with cloud inhomogeneities can clearly alter the 

appearance of the ISM, the cloud inhomogeneities can similarly have a profound effect on the structure of 

the SNR. 

Given the importance of the interaction of the supernova shocks with clouds for understanding the 

structure and the dynamics of the ISM as well as the potential importance of the interaction as a means of 

triggering new star formation, the problem has been studied ooth analytically and numerically over the past 

decade. Even when idealized as the interaction of a strong shock with a spherically symmetric cloud 

en1bedded in a less dense intercloud medium, the problem represents an extremely complex non-linear 

hydrodynamic flow encompassing a rich family of shock-shock interaction phenomena. The multi

dimensional nature of the evolution of the disrupted cloud is such as to make a detailed analytic calculation 

intractable. The flrst serious attempt to follow the interaction numerically was made by W oodward2, who 
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used a combined Eulerian-Lagrangian approach to follow the interaction oftJ:e shock from a spiral density 

wave with a galactic cloud. These results showed the start of both Rayleigh-Taylor and Kelvin Helmholtz 

type instabilities; however, the calculation was not carried out far enough to ascertain the fmal fate of the 

cloud. A subsequent attempt to investigate this problem by Nittman et al.3 used a flux-corrected transport 

approach and was very unresolved. Recently, Tenorio-Tagle and Rozyczka4 attempted to follow the 

evolution with a second order accurate hydrodynamic scheme, but again the calculation was under

resolved and clearly showed the effects of strong numerical diffusion at the interface of the cloud boundary 

and the intercloud medium. This made it impossible to disentangle the mixing of cloud-intercloud matter 

due to physical instabilities from mixing due to numerical effects. AU of the previous work on this 

important problem leave unanswered several questions of key importance: What is the ultimate fate of 

clouds that have been impacted by SNR shocks? What is the total momentum delivered to the cloud? 

How much mass is lost from the cloud? To what extent is the cloud disrupted? How do the results scale 

with cloud density, shock Mach number and cloud size? Is the cloud driven to gravitational instability or 

is the cloud destroyed? What is the effect of the interstellar magnetic field on the evolution? What are the 

observable consequences of the interaction" 

As we shall see, highly complex shock-shock interactions playa major role in determining the 

morphology of the cloud. Instabilities and shear flow motions are crucial to track accurately_ These 

physical phenomena place an enormous constraint on the capabilities of most conventional numerical 

methods for solution in 2-D. Even high order accurate approaches such as PPM5 with flXed Eulerian grids 

would require at least 1()6 grid points to follow the evolution accurately enough to answer the questions 

posed above. Clearly, one has a great need to evolve solutions in 2-D with a great enough accuracy to deal 

with physical constraints and at the same time do so economically in both storage and time. 

I I. METHODOLOGY 

To address these difficulties, we have used the local adaptive mesh refinement techniques with 

second order Godonov methods developed by Berger and Colella.6 This ftrst important problem will be 

the forerunner of a broad-based program we are developing to use adaptive mesh refinement to study 

astrophysical gas dynamics. We employ a second order fmite difference solution of the Euler equations on 

a square grid in a cylindrically symmetric geometry. The numerical integration of the Euler equations is 

accomplished using an operator split version of a second order Godunov method (Van Leer,7 Colella and 

Woodward8). The Godunov method conserves mass, momentum and total energy. We use a y law 

equation-of-state, with the cloud and intercloud medium potentially having differing y. The resulting 

method is second order accurate in space and time, and captures shocks and other discontinuities with 

minimal numerical overshoot and dissipation. 

The fluid interface i~ modeled u~ing the SLIC9 algorithm. In this approach the fraction f of the ce1J 

occupied by the cloud is detennined for each grid cell through which the cloud interface passes. At the end 
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of every timestep a simple picture of the interface consisting entirely of venical and horizontal line 

segments is reconstructed from the volume fraction infonnation. This picture is then used to detennine 

how much of each fluid is convected out of the cell into adjacent cells at this time step and an update of the 

partial volumes associated with each cell is obtained. A possible difficulty of this approach is that in a 

region of expansion or compression, both fluids in a multi-fluid cell will be expanded or compressed 

equally, regardless of the difference in compressibility between them. To correct this difficulty, we use a 

scheme in which the equations of motion are rewritten to include extra evolution equations for the volume 

fraction, total energy of each fluid, and mass density of each fluid in multi-fluid cells. This takes into 

account the fraction of each fluid component in the cell in such a way as to ensure the correct relative 

expansion or compression of each fluid component. 

From the point of view of being able to resolve detailed complex physical structures with reasonable 

amounts of supercomputer time and memory, the most important feature of our ccxle is that it employs a 

dynamic regriddng strategy known as Adaptive Mesh Refinement (AMR)6 to dynamically refine the 

solution in regions of interest or excessive error. This is effected by placing a fmer grid over the region in 

question with the grid spacing reduced by some even factor (typically 4). The ooundary of the refined grid 

is always chosen to coincide with cell edges of the coarser grid. Multiple levels of grid refinement are 

possible with the maximum number of nested grids supplied as a parameter in the calculation. Typically 

our calculations employ two nested grids over the initial coarse (level 1) grids. In our present work, we 

determine those regions which require refmement by estimating the local truncation error in the density and 

refining those regions where the error is greater than some initially specified amount. In addition, we 

require the maximum level of refinement in the neighborhood of all cells containing cloud material. 

Special care is taken to ensure the correct fluxes across boundaries between and fine grids. This dynamic 

adaptive gridding approach is a crucial factor in our ability to economically resolve important features in 

the cloud shock interaction. 

An important feature of our method is that the mesh is locally refined in space-time by r=AXl-l/AXl 

on all grids, where AXl is the grid spacing on levell. This implies that the explicit difference scheme 

remains stable on all grids. In our approach, refined regions appear and disappear in time as they are 

needed. Given that high resolution second order Godunov schemes are necessary to resolve key features 

of the interaction, but may still be expensive, AMR concentrates the computational effort in regions where 

it is most needed without sacrificing accuracy anywhere else. This is in contrast to moving grid 

approaches. Here one is pulling grid-lines into one region at the expense of sacrificing accuracy 

elsewhere, giving a fixed cost for the most accurate solution. Grid moving methods have inherent 

difficulties. There are problems maintaining smooth grids; regularity terms and penalty functions for grid 

regularization can be complicated and expensive~ and one must initially guess at the adequate number of 

grid points necessary to resolve features that may appear. On contrast, AMR obtains a fixed accuracy at 

minimum cost. Grid points are added or removed as is necessary to maintain a desired accuracy. 
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III. CLOUD SIZE SCALES 

As the SNR expands through the ISM, it drives a shock into any cloud it encounters. Assuming that 

these are strong shocks, the pressure behind the blast wave and the pressure behind the transmitted cloud 

shock are comparable, and one finds that (McKee and Cowie)10 

v, == (pJPc)l/2 Vb , (1) 

where Vs and Vb are the cloud shock and blast wave velocities and Pc and Pi the cloud and intercloud 

densities, respectively. Following McKeel, we define characteristic timescales for the cloud-shock 

interaction. Let X == Pc/Pi be the density and assume that X» 1. Assume that the cloud is a sphere 

with radius a at a distance R from the supernova explosion. The blast wave in the Sedov-Taylor phase 

will expand as Rboct2lS. We can defme the cloud crushing time, 

(2) 
the intercloud crossing time, 

t· = 2a. 
Ie - Vb (3) 

and the age of the SNR, 

(4) 

The cloud is destroyed by thermal evaporation or by hydrodynamic instabilities in a time of order 

tel - X 1/2 tee, which is comparable to the time for drag forces to bring the cloud to rest in the interc10ud 

medium. 

In this paper, we will consider only clouds that can be characterized as "small", so that the SNR does 

not evolve significantly during the time for the cloud to be crushed: and we fmd that 

(5) 

Indeed, we shall focus on the case in which the cloud is "very small", so that t» fd, and a« O.4R1X. In 

either case, we have a« R so that the blast wave may be treated as a planar shock. In the opposite limit 

of a shock interaction with a large cloud the SNR blast wave will undergo substantial weakening over the 

time it takes to cross the cloud. We expect substantial disruption for the small clouds, but only impulsive 

effects for large clouds. 
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IV. RESULTS 

Since there are no intrinsic scales in the problem, it is parameterized by the Mach number of the SNR. 
blast wave M and the density ratio X. Our calculations assumed 2-D axisymmetry for an inviscid fluid 

with no magnetic field. Two cases were considered for the cloud: y=1.1 and Y= 5(3. The intercloud gas 

was assumed to have 'Y = 513. Several calculations have been made for Mach numbers in the range 10-103 

and density ratios 10-1()2. 

It is useful to follow the morphological evolution of the cloud through several cloud crushing times 

to obtain a sense of the different stages of development. We present the time-development of the 

isodensity contours of the cloud for the case 'Y (cloud) = 'Y (intercloud) = 5/3, 1=10, M=10. At t=O.84tcc 

(Fig. 1), the transmitted shock is compressing the cloud from the front, secondary shocks have enveloped 

the sides of the cloud as the blast wave passes over the cloud, and a reflected bow shock moves upstream 

into the intercloud medium. The reflected shock becomes a standing bow shock and eventually a weak 

acoustic wave carrying away a small amount of energy from the supernova shock (Spitzer, 1982). At 

t= 1.05tcc (Fig. 2) the blast wave behind the cloud reflects off the axis giving rise to a Mach reflected shock 

back into the cloud. After t=1.26tcc (Fig. 3), behind the cloud, a double Mach reflection with the 

appearance of two triple point interactions occurs. This classic oblique shock interaction12.13 shows 

evidence of a strong supersonic vortex ring far behind the cloud. The VOI1ex ring may have interesting 

observational consequences for SNR (see below), but plays no role in the continued dynamical evolution 

of the cloud. The reflected shock and the transmitted shock undergo a strong interaction at t=1.68tce (Fig. 

4) resulting in a initial flattening of the cloud. We also note the beginning of a strong shear flow. The 

vonicity is efficiently produced by strong components of V pXVP at the interface. Substantial flattening 

of the cloud is observed at t=2.1 tee from the strong shocks which have squeezed it like a vise. The 

pressure maximum on the nose of the cloud exceeds the pressure minimum on the sides and the cloud 

begins to expand laterally3 (Fig. 5). We note the growth of Richtmyer-Meshkov13 instab~lities on the 

cloud nose which grow more slowly than the classic Rayleigh Taylor modes. At t=2.Stcct we see evidence 

of Kelvin Helmholtz instabilities, on the sides of the cloud; weak shocks still residing in the cloud interior 

dissipate their energy (Fig. 6). At 3.78tcc a prominent shear layer exists through the cloud. This shear is 

caused by a combination of the effects of the downstream reflected shock keeping high pressure in the 

center of the cloud relative to the sides, the effects of the cloud moving through the ICM, and the 

development of Kelvin-Helmholtz instabilities. The shear produces copious vortex rings along the shear 

flow layer and leads to substantial Kelvin Helmholtz instabilities which break up the arms (Fig. 7), The 

cloud consists of a distorted unstable axially flattened core component and a severely disrupted halo of 

cloud material. Over 70% of the original cloud mass is in small fragments which, in the absence of 

cooling, should merge with the intercloud medium. The unstable break up is dominated by large scale 

differential shear. Finally, at t=9.7tec the cloud is essentially destroyed. The cloud consists of multitudes 

of small fragments distributed along a halo structure with an aspect ratio of about 6, with no evidence of a 

core component (Fig. 8), 
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Let us consider the characterization of the evolution of the interstellar cloud in more detail. In 
Table 1, we display the results of adiabatic calculations for three models where 1=1.67 in both the cloud 

and ICM for all cases. The calculations are done for two models of M=10 and 100 for density contrast 

X = 1 0 and one model M= 100 and density contrast 100. The frrst entry in the table is the time normalized 

to the intercloud crossing time. The second entry gives the time nonnalized to the cloud crushing time and 

the drag time, 1:ci = X I/l tee. The next column is the sound speed behind the cloud shock nonnalized to the 

blast wave velocity. It can be shown that the initial cloud shock can accelerate the gas up to 3/4 Vs for non

radiative shocks, so the next entry is a measure of the fraction of the velocity currently in the cloud to its 

maximum possible velocity; in the frame of the shocked intercloud gas, this is a measure of cloud 

deceleration. The next column is a characterization of the cloud's aspect ratio in the radial and axial 

direction weighted by its half mass distribution. Here fIll is the radial half-mass distance and Zl/l is the 

axial half-mass distance. The last column gives the radial TIf2 and axial ZIf2 dispersion velocities of the 

cloud to quantify the amount of stretching the cloud undergoes as it is subjected to shearing. These 

velocities are computed by using the half mass distance distributions at the two final times in the 

calculation. 

Several conclusions can be drawn from these results. Comparing the results at the same nonnalized 

"final lt time t=4.2tcc for clouds of the same density X=10, but subjected to blast waves of different Mach 

number 10 and 100, we note that both clouds have decelerated to about 0.15 of their initial velocities. 

Thus. these clouds have almost stopped, leading to a small pressure differential between the front of the 

cloud surface and the sides so that there is little force driving further radial expansion; hence the clouds 

have a radial dispersion velocity Tlfl = O. The strong shear flow in the cloud is still dominant, however, 

and both clouds are supersonically shearing apart at about the same axial dispersion velocity Zlf2 of 3 times 

the cloud velocities. The physical extent of the stretching in both the radial and axial direction 
rI/2et) Zl/2(t) 
rlll(O) Y Zlfl(O) 

when compared to the characteristics cloud size initially is essentially the same. The remarkable agreement 

of these features of the clouds leads one to suspect that the cloud evolution may scale similarly with the 

Mach number of the SNR shock. In fact, if we look at the isodensity contours of both clouds at t=4.2tcc, 

we clearly see the evolution is similar (Fig. 9a,b). This Mach scaling can be clearly seen if we scale the 

time, velocity and pressure as t' = tiM, v' = vM and p' = PW. Substituting these scaled quantities into the 

Euler equations, we find that Euler equations are invariant under this transformation. Thus, we find that 

for fixed 1 and density t the morphological evolution is a function of tllcx only in the limit of large M. At 

t=3.78tcc (Fig. 7), the cloud is experiencing a large drag due to the lateral increase in its surface area 

associated with the highly flattened core component. This results in the large deceleration as the cloud is 

slowed to .16 of its maximum velocity. At the final time t=9.7tcc in the calculation, the cloud has 
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essentially been destroyed (Fig. 8). We note that the cloud has decelerated to 0.07 of its original velocity 

and has essentially stopped expanding axially as well as radially. The final fate of this cloud consists of a 

quasi-static halo of fragments of which 50% of the mass resides in an axially elongated distribution 

stretched out 5-6 times its initial shape, and the rest of the mass resides in a multitude of fragments much 

less dispersed. If we consider the case with X= 100, we note that the cloud has a large aspect ratio and 

appears to be substantially more radially compressed t"an the lower density cloud. This can be understood 

by considering that the shock passes over the cloud far more rapidly than the cloud shape can change, and 

a quasi-steady flow is established around the cloud with a pressure maximum at the front of the cloud and 

a pressure minimum on the sides. The gas passes through a sonic point point as it flows past the cloud A 

rarefaction wave moves into the shocked cloud (Nittmann and Falle3) producing velocities of the order of 

the sound speed so that the cloud expands laterally at the sound speed. It is easily shown that the sound 

speed 

(
P<jl12 

c cc p; Vb, 

so for the higher densities the cloud expands much more slowly and appears radially compressed. These 

clouds have less drag and so experience less deceleration than the less dense clouds. We also note that at 

t=4.3tcc, the cloud is still axially supersonically shearing. As remarked above, the destruction time for the 

cloud ld is comparible to the drag time ax and our simulation confmns that the small clouds experience 
Vb 

substantial ablation after a few drag times. 

We have performed calculations for several similar models for r1.1 in the cloud. IS This softer 

equation-of-state is more representative of clouds that are radiative, although it should be pointed out that 

truly radiative clouds can get rid of their stored energy efficiently, and we would expect substantially more 

shock compression than the models considered here. We note that these flradiative tt clouds move 

substantially more rapidly than their y=1.67 counterparts. These clouds are significantly more radially 

compressed, and thus experience far Jess drag than the 1-1.67 clouds. This can again be understood by 

consideration of the sound speed in these clouds. We find that the scaling of sound speed c with y is such 

that c(y=1.1)« c(r5/3), so that these "radiative II clouds expand laterally more slowly_ We note that the 

high density "radiative" cloud is still experiencing large supersonic axial shearing. As with the previous 

models Mach scaling appears to be established. 

An outcome of these calculations that may be potentially very important for observations of SNR is 

the discovery of the copious production of vortex rings distributed along the strong shear flow layer (Fig. 

10). In this graph of iso-vortex contours at t=5.0tcc we see fonnation of many points of high vorticity. 

Approximating the rotation of these vortices by rigid body rotation, we can relate the vorticity co in an 

individual vortex ring to the pressure differential across the vortex ~P, and we find that 
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co = (8AP/p)1/21/r. This appears to be an excellent approximation when compared to our detailed 

calculations. Recent high resolution radio observations of the Cas A SNR(Tuffs16) have revealed several 

hundred intense compact radio emission peaks distributed throughout the remnant We have demonstrated 

that strong shear flows associated with shock cloud interactions result in the production of many 

supersonic vortex rings. These vortex rings can be expected to wind up ambient magnetic fields present in 

the interstellar clouds until equipartition between the energy in the field and the vortex is achieved. It is 

quite possible that the resulting intense wound up magnetic field could account for the synchrotron 

emission of electrons, thus explaining the observations in Cas A. Chevalier17 (1976) postulated the 

presence of turbulent vortices, acting as magnetic scattering centers in SNR's to explain particle 

acceleration by a second-order Fenni mechanism. We conjecture that the radio hot spots may indeed be 

indirect observational evidence of the presence of vortex rings produced behind the shocked clouds. 

v. CONCLUSIONS 

We have performed, for the frrst time. second order accurate high resolution local adaptive mesh 

refmement calculations of the interaction of a supernova shock with interstellar clouds. These extremely 

powerful hydrodynamic techniques have enabled us to calculate exceedingly complex flows much more 

rapidly and much more accurately and much further in time than previous work with standard fixed grid 

hydrodynamics. We have followed the evolution of interstellar clouds well into the regime of 

fragmentation. Our calculations have demonstrated high accuracy with 80,000 grid cells in the cloud that 

would only be achievable with fixed grid high order accurate hydrodynamic schemes with > 1,000,000 

grid cells. We find: 

1) Small interstellar clouds are efficiently destroyed in a few cloud drag times by combined 

Rayleigh-Taylor and Kelvin Helmholtz instabilities dominated by large scale shear flow. Clouds 

that have the same density but are enveloped by strong shocks of differing Mach number exhibit 

scaling behavior in their morphological evolution. 

2) Small clouds are highly fragmented. Cloud fragments will most likely feed their mass back into 

the ISM by thennal conduction. 

3) Small clouds fragment to such an extent that it is unlikely that fragments large enough to become 

gravitationally unstable and form stars will survive. This conclusion is based on the present 

adiabatic calculations and may not apply to radiative clouds or clouds which are not "small II. 

4) Clouds evolve toward a elongated structures with aspect ratios of five to six consisting of 

multitudes of fragments. 

5) Our calculations indicate the copious production of supersonic vortex rings. Those rings with 

large aspect ratio may be subject to non-axisymmetric instabilities and break up into yet sma11er 

vortex structures.18 "FatH rings, with small aspect ratio, are likely to remain intact. These vortex 

rings may be effective in winding up the ambient magnetic field in clouds, increasing the 

magnetic field strength and enhancing the synchrotron emission of cosmic ray electrons. This 

could explain the recent observations of numerous compact radio hot spots in Cas A. 
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In the future, we will be using adaptive mesh refinement hydrodynamic techniques to investigate a 

broad range of astrophysical gas dynamical phenomena. 
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Table 1 

tlta:, rl/2( t)/fI/2(O) 1:1nJvb 

tltic t/tdrag C/vb 
j<VJvb) 

Zl/2(t)!Zl/2(O) ZlnJvb 

X=10 
M=10 6.7 4.2 0.18 0.16 1.8 -0.0 

1.3 3.2 0.35 

15.3 9.66 0.074 2.38 -0.0 
3.0 5.69 S;0.045 

M=l00 6.7 4.2 0,18 0.14 2.0 -0.0 
1.3 2.6 0.32 

X=100 
M=100 21.3 4.3 .056 0.25 3.7 -0.0 

0.43 8.4 0.42 
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